Printed Page 1 of 2 Paper Id: 180117

Roll No:

B. TECH. (SEM-I) THEORY EXAMINATION 2019-20 ENGINEERING MATHEMATICS- I

Time: 3 Hours

Total Marks: 100

1 0x 2 = 20

NoteAttemapltBectiohfsequianeymissidgtahenhoosseuitably. SECTION

1. Attemøkquestionbsrief.

- a) Find the derivative of $y = x^3 2x^2 + 4$ with respect to x.
- b) Examine the continuity of $f(x) = x^2 x + 1$ at x = 1.
- c) If $u = x^2 y^2$ then find the value of x + y .
- d) If $x = r \cos\theta$ and $y = r \sin\theta$ then find $\frac{(,)}{(,)}$.
- e) Define Gamma function.
- f) Evaluate $\iint e^{x-y} dx dy$ over the triangle bounded by x=0, y=0 and x+y=1.
- g) Find order and degree of differential equation $(-)^2 + 5y = x$.
- h) Find the I.F. of -+xy = e
- i) Find the Rank of the matrix $A = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 2 & 1 & 3 \end{bmatrix}$
- j) The Eigen value of matrix A are 1,-2,3 then find the Eigen value of A^3 .
 - SECTION B

2. Attempt any *three* parts of the following:

- a) Differentiate $(x)^x$ with respect to x.
- b) Expand $f(x) = e^{\sin x}$ in powers of $(x \pi/2)$ by Taylor's theorem
- c) Solve $\frac{d^2y}{dx^2} + 5\frac{dy}{dx} + 6x + \sin 2x + \cos 2x$.
- d) Evaluate the area chelosed between the parabola $y = x^2$ and the straight line y = x.
- e) Find the characteristic equation of the matrix and verify Cayley Hamilton theorem. Hence find A.

 $A = \begin{array}{c} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{array}$

SECTION C

3. Attempt any *two* parts of the following:

- a) Differentiate $\log(ax+b)$ with respect to x.
- b) Evaluate lim ——.
- c) Evaluate —— dx.
- 4. Attempt any *two* parts of the following:
 - a) If $u = \log (x^3 + y^3 + z^3 3xyz)$, Show that (-+ + -) u = 3 / (x+y+z).
 - b) What is the degree of homogeneous function $u(x,y) = x^2(x^2-y^2)^{1/3} / (x^2+y^2)^{2/3}$
 - c) If $y = --, y = --, y = --, find \frac{(, ,)}{(, , ,)}$

Download all NOTES and PAPERS at StudentSuvidha.com

- 5 x 2 = 10

5 x 2 = 10

 $10 \ge 3 = 30$

Printed Page 2 of 2	Sub Code:NAG101
Paper Id: 180117 Roll No: Image: Comparison of the second sec	
5. Attempt any <i>two</i> parts of the following: a) Evaluate $\iint x y dx dy$ over the positive quadrant of the circle $x^2+y^2 = a$ b) Change the order of integration $dy dx$. c) Prove that $\beta(m, n) = \frac{1}{(n-1)}$.	5 x 2 = 10 a ² .
6. Attempt any <i>two</i> parts of the following:	5 x 2 = 10
 a) Solve = x tan y b) Solve (D²-4D+4) y = x³ e^{2x}. c) Using method of variation of parameter to solve y" + y = sec x. 	
c) Using method of variation of parameter to solve $y + y = \sec x$.	
7. Attempt any two parts of the following:	5 x 2 = 10
a) Find inverse of the matrix by using elementary transformation A $\begin{bmatrix} 3 \\ 2 \\ 0 \end{bmatrix}$ -	-3 4 -3 4 -1 1
b) Find the Eigen values of the following matrix $A = 2$ $\begin{pmatrix} 4 & 3 & 1 \\ -2 & 1 & -2 \\ 1 & 2 & 1 \end{pmatrix}$	
c) Find the rank of the matrix $A = 4$ 0 10	
c) This die hank of the matrix $A^2 = 4 = -9 = 10$ 3 = -6 = 15	